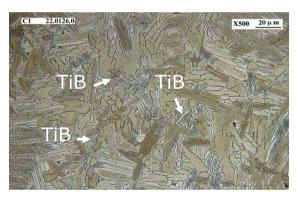


Metal Ceramic Composites Based on Preforms (PREFORMCERMET)

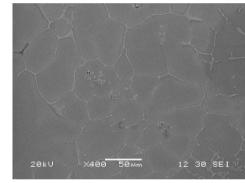
Metal-ceramic composites with high wear resistance, high thermal conductivity, high strength for applications to at least 900 ℃

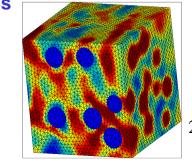
→ Al₂O₃-Cu metal ceramic composite with interpenetrating network microstructure

New particulate AI and Ti matrix composites produced by self propagating high temperature synthesis (PartMMC)


Development of the SHS process for production of MMCs based on Al and Ti.

→ SHS: synthesis of compounds in a wave of chemical reaction (combustion) that propagates over a starting reactive mixture owing to layer-by-layer heat transfer.


TARGETED APPLICATIONS:

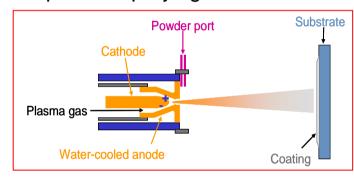

Al-Cu4Mg1 + TiC

Mechanical properties

	E (GPa)	Rp0.2 (MPa)	Rm (MPa)	A (%
Sample 0	144	848	921	7.3
Sample 1	157	805	902	7.8
Sample 2	147	884	886	7.3
Sample 3	159	785	881	7.4
Average	152	806	897	7.5

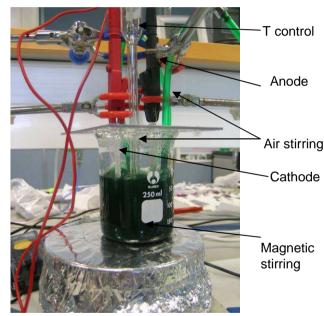
Multiscale modelling of the non-linear behaviour of MMCs

NRT2-4 Metal-Ceramic Nanostructured Bulk Composites and Coatings (NANOCERMET)

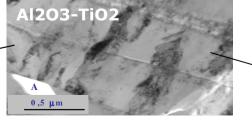

Development of novel metal-ceramic nanostructured multifunctional composite systems:

- i) model materials for basic research (nanoscience)
- ii) potential applications in technology and medicine
- I) Wet chemical methods of synthesis of ceramic nanopowders

YAG


Surface area: 22 m²/g

II) Nanostructured ceramic coatings by atmospheric plasma spraying



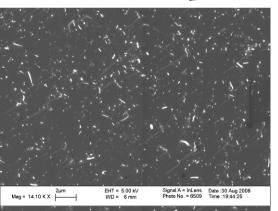
Oxide (Al₂O₃-13%TiO₂) and non-oxide (WC-12%Co) coatings produced

III) Composite coatings by electrochemical deposition: Ni/SiC and Ni/Al₂O₃

Nanostructured coatings exhibit higher microhardness and better wear resistance than conventional (µm) ones.

Pin-on-disk wear resistance tests

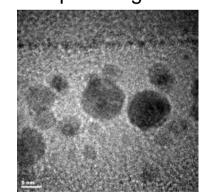
Ti6Al4V alloy coated with conventional and nanostructured Al2O3-13%TiO2 coatings.


NRT2-4 Metal-Ceramic Nanostructured Bulk Composites and Coatings (NANOCERMET)

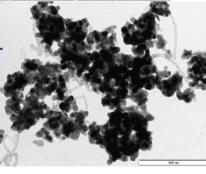
IV) Carbon nanotube (CNT) containing composites (and coatings) by electrophoretic deposition (EPD)

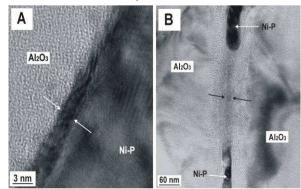
Schematic diagram of EPD of CNTs

CNT deposit by EPD


CNT/SiO₂ nanocomposite by surfactant assisted heterocoagulation

EPD cell


VI) Metal nanoclusters/silica composites by RF co-sputtering


V) Bulk alumina-metal nanocomposites by chemical electroless deposition of Ni-P

TARGETED APPLICATIONS: sensors, antibacterial layer,

Zirconia nanopowder /CNTs mixture

